If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+15p-18=0
a = 7; b = 15; c = -18;
Δ = b2-4ac
Δ = 152-4·7·(-18)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-27}{2*7}=\frac{-42}{14} =-3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+27}{2*7}=\frac{12}{14} =6/7 $
| 12y=13y | | (10x-22)+(8x+12)=275 | | 5k-3=-2k+30 | | 10^{2}+b^{2}=18^{2} | | 7n+6n=2 | | j÷6=10 | | 2a²-2=-2a | | (8x+12)+(10x-22)=180 | | 7/14=n/7/14n | | 4*z=42 | | 5m-3m=3 | | 230=93+x | | f÷3=9 | | 7-2x=-x-7 | | 15x-15=13+7 | | 5(x+6)+10=12 | | 1.5(x−9)=45 | | Y=250x+3,000 | | 3A-5=5a+21 | | -8+4y=y-6+37-2 | | x+(x(3)-15)2)/5)=(x-14)3+(x+30)/5 | | -2=n/4-9 | | 8x-26=17 | | 6x^2+5x+3x=0 | | -2=n/9-9 | | n+2(n-4)=5n+6 | | 2.2x-6=3.2x+6 | | 3g+7=g-17 | | /x=29–3(9–4) | | -28+12x=62+15x | | m^2-46=0 | | p÷5=7 |